AIPO Tips and Tricks

Andrew Nash

Feb 2023

Introduction

The first problem in the 2024 preliminary round is aa very simple summation
problem. The intention of this is to make sure that you understand the format
that solutions are expected to be in. If you are new to competitive programming,
and are struggling with this aspect, this document is a guide to hellp explain
some common pitfalls specific to how our server accepts code submissions.

Simple Sample Problem

You are given three lines of input:

Line 1 Two space separated integers, a and b
Line 2 A single integer n
Line 3 n space separated integers

Your task is to output, on two lines, the product a * b, and the sum of the
line of n integers, i.e. >.1 | L;

Solving the problem

A critical aspect of solving any problem is to perform inputs, and present outputs
in the correct manner.

When grading submissions, the server will evaluate your submission against
test cases. For each test case, the sample input is passed into your program
via the console. Your program’s output is captured, and compared to a the test
case solution. Any difference in output results in that test case being a fail,
otherwise it is considered a pass.

Lets assume that you have a program, which is a solution to the above
problem. Don’t worry if you don’t understand fully everything that this code
is doing, this will be discussed later.

A my_submission1.py - C:/Users/anash/Downloads/my_submission1.py (3.10.9

File Edit Format Run Options Window Help
input str = input()
input list = input str.split()

a = int(input_list[0]
b = int (input list[1])

print (a*b)

n = int(input())

input_str = input()

input list = input str.split()

total = 0

for i in range(n):
total+=int (input list[i])

print (total)

Figure 1: A correct solution

Lets consider the example of one test case. In reality, there will be many
test cases for each problem.

E testlin - Notepad

File Edit View

Ln 3, Col 10 100% Windows (CRLF) UTF-8

Figure 2: A test case input

B test1.0ut - Notepad u]

File Edit View =

8
12

L2, Col 3 100% Windows (CRLF) UTF-8

Figure 3: A test case expected output

The server will, under the hood, do something similar to the following:

$ cat testl.in | python3 my_submissionl.py

$ cat testl.in | python3 my_submissionl.py > submission_output.out
$ diff testl.out submission_output.out

Figure 4: How the server will grade a submission on a test case

Here, we see that the diff command doesn’t return anything - so the server
considers this test case a pass, and will award points for this test case. If there
are ten test cases for this problem, passing this case would be worth 10 points.

If however, you submit this code, which does the same thing as the above
code, but contains extra input() and print() statements, the test case will fail

-

A my_submission1.py - C:/Users/anash/Downloads/my_submission1.py (3.10.9)

File Edit Format Run Options Window Help
input str = input("Enter a pair of numbers:")
input list = input str.split()

a = int(input 1list[0])
b = int(input list[1])

print("Calculating the result....")
print ("Result", a*b)

n = int (input())

input_str = input/()

input list = input str.split()
total = 0

i range (n) :
total+=int (input list[i])

print (total)

Figure 5: An incorrect submission

Look at what happens when the server tries to grade this problem:

$ cat testl.in | python3 my_submissionl.py

Enter a pair of numbers:Calculating the result....
Result 8

$ cat testl.in | python3 my_submissionl.py > submission_output.out
$ diff testl.out submission_output.out

> Enter a pair of numbers:Calculating the result....
> Result 8
$

Figure 6: The arguments to input(), and extra print statements cause the diff
command to find differences in the files that cause a fail

The lesson here is that you should NEVER include any unnecessary print
statements, prompts in input() commands. Further, the layout of your inputs
and outputs are important. If the problem specifies that an input is one one or
multiple lines, your code must account for this precisely.

Submitting the problem to the server

First, log in to the server, as per the instructions in the registration form.
Navigate to the partiular problem you want to make a submission for.

PN
. g g 3 Dummy) Automatic v

Server time: . .
21:29:00 SimpleSums (SimpleSums) sumissions
Time left:
60290:30:59 Score:
0/100
Overview

Communication

Submit a solution
SIMPLESUMS

Statement SimpleSums: | Choose File | No file chosen

Documentation Reset

Testing

Contest Management System Previous submissions

is released under the GNU

Affero General Public

Time Status Score Files
License.

no submissions

Figure 7: The submissions page

From here you can upload your submission, select the language used, and
submit it for grading.

Automatic v

Server time: . .
21:29:33 SlmpleSumS (SlmpIeSums) submissions
Time left:
60290:30:26 Score:
0/100
Overview

Communication

Submit a solution
SIMPLESUMS

Statement SimpleSums: | Choose File | my_submission1.py
Pyton3.12/PYPy 739~

Documentation Reset

Testing

Contest Management System Previous submissions

is released under the GNU

Affero General Public) .
Time Status Score Files
License.

no submissions

Figure 8: Upload a solution, making sure the language dropdown matches the
language used to code the solution (Python or C++)

Automatic

Server time: . . Submission received
21:29:47 Slmplesums (Slmplesum Your.submission has been
received and is currently
Time left: being evaluated.
60290:30:12 Score:
0/100 .
Overview

Communication

Submit a solution
SIMPLESUMS

Statement SimpleSums: | Choose File | No file chosen

Documentation Reset

Testing

Contest Management System Previous S ubmissions

is released under the GNU

Affero General Public

Time Status Score Files
License.

9:29:46 PM Compiling... ot Download

Figure 9: The server will take a little while to return a grade, please be patient
when waiting for results.

When the server is finished grading your submission, you will be able to
review your results on each testcase. In this case, there is only one test case. If
you upload the second, incorrect, solution with extra print statements above, for
example, you will get an outcome of WRONG ANSWER. This verdict means
that your solution ran, and printed an answer, but it did not match the correct
output for the test case. This may be caused by incorrect print statements, or
potentially a logical issue in your code, where it is not correct - and is using an
incorrect algorithm to solve the task.

Submission details

Outcome Details
Output isn't correct

Compilation output

Compilation outcome: Compilation succeeded
Compilation time: 0.000 sec

Memory used: 0 bytes

Standard output

Standard error

Figure 10: How a wrong answer outcome is displayed

If you upload a correct solution, you will see something like:

10

B R
ogged in as Test Us umm) ogout Automatic v

Server time: . .
21:30:53 SimpleSums (SimpleSums) suomissions
Time left:
60290:29:06 Score:
100 / 100
Overview

Communication

Submit a solution
SIMPLESUMS

Statement SimpleSums: | Choose File | No file chosen

Documentation Reset

Testing

Contest Management System Previous submissions

is released under the GNU
Affero General Public

. Time Status Score Files
License.
9:30:45 PM Evaluated details =~ 100/ 100 Download
9:29:46 PM Evaluated details | 0/100 Download

Figure 11: How a correct answer outcome is displayed

There are a few other possible outcomes you will see

Execution timed out To test whether solutions are efficient as well as correct, we only award
points to a submission if it takes less than 1 second to solve each test case.
For each test case where a solution was not returned in under 1 second,
this verdict will be displayed.

Memory limit exceeded Similarly, if a solution used too much RAM when it is run, this verdict
will be returned. This is rarely seen, unless your solution uses extreme
quantities of memory (usually >500MB).

Execution failed ... Your program crashed, i.e. raised an exception, after encountering some
bug in your code. Try to figure out what potential edge-case inputs could
cause your code to crash.

More information on each of these can be found in the documentation panel,
on the left hand side in the server.

11

Input/Ouput in Python

There are a few useful general techniques in Python that you can use to perform
input and output functions:

By default, the input() function returns a string, so reading strings is quite
strightforward

a_string = input()

If you have a sentence of 'words’ separated by spaces on a single line, that
we want to save into a list of individual words we can use the builtin split()
function

words = input().split()

If the words are separated by something other than spaces, e.g. ”-", like
a-weirdly-presented-sentence

We can use
words = input().split("-")

This works for multiple separator characters
even--weirder--presented--sentence
words = input().split("--")

For a single int or float, we can just use:

intvar = int(input())
floatvar = float(input())

Which reads in a string that contains some number, and converts it to a
numeric type (int or float respectively).

If you want to read a fixed number of space separated integers on a single
line, you can use code like:

a,b,c = map(int, input().split())

This is effectively taking the list of strings that we see above, and using the
map() function, to turn each word’ in the list into an integer. Then, these are
saved into three variables.

If the inputs are separated by something other than spaces, e.g.

12:16:34

You can use

12

a,b,c = map(int, input(":").split())

Similarly to above.
If the inputs are floating point numbers:

12.07:16.54:34.086
The code becomes:
a,b,c = map(float, input(":").split())

If we have a variable number of space separated inputs, that we need to read
into a list, we can use:

numbers = list(map(int, input().split()))

